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Abstract. The two atoms in the ion trap are entangled by the interaction with an external excited atom.
The evolution of the entanglement is analytically derived without the decoherence. Considering the spon-
taneous decay from the environment, the evolution of the entanglement is similar to the damping Rabi
oscillation. The generation of entanglement is induced by the dipole-dipole type interaction of atoms. It
is found that the entanglement of two trapped atoms is robust with the uniform interaction with the ex-
ternal atom. The collective spontaneous emission from the coupling between the atoms may enhance the
entanglement.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 03.67.Mn Entanglement production, characterization, and manipulation – 05.40.Ca Noise

QICS. 03.30.+e Entangling power of quantum evolutions – 02.40.+d Interaction with environment and
decoherence – 15.10.En Ions: vibrational states

1 Introduction

The entanglement is of importance in the quantum in-
formation processing [1,2]. The resource of entanglement
has been extensively used for quantum cryptography [3],
quantum teleportation [4,5]. The experimental prepara-
tion of two entangled qubits has mainly focused on the
nuclear magnetic resonance (NMR) and the cavity quan-
tum electronic dynamics (Cavity-QED) [6]. It is necessary
to qualify the entanglement. The relative entropy of en-
tanglement [7,8] and the entanglement of formation [9] are
basic measures for the bipartite systems. From the prac-
tical point of view, the decoherence of the entanglement
is sometimes inevitable. By the interesting work [10], the
external noise can give rise to the entanglement to some
degree. With the consideration of heat reservoir, some
protocols of entanglement generation have been put for-
ward [11–15]. The development of the laser cooling and
trapping technology provides us an efficient way to control
the individual atom in traps [16,17]. Due to this point, it is
of value to study the entanglement generation in trapped
atoms.

In this paper, robust entanglement of two trapped
atoms is generated by the interaction with an external
excited atom. In Section 2, the evolution of the entangle-
ment is obtained without the decoherence. In Section 3,
the effects of atom spontaneous decay from the vacuum
reservoir are studied. Nonuniform couplings among atoms
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are considered. In Section 4, the physical explanation of
entanglement production is given by the analytical ap-
proximation. In Section 5, the exact analytical solution to
the equation of motion is derived in the presence of the
spontaneous emission. The effect of the collective spon-
taneous emission on the entanglement is considered. A
discussion concludes the paper.

2 Generation of two entangled trapped atoms

Our protocol of the entanglement production is realized in
the trap. Two trapped two-level atoms a and b are initially
prepared in the ground state |g〉a|g〉b. The external atom e
is individually controlled and then interacts with atoms a
and b. The coupling strengths of atoms a and b with e are
denoted by ga and gb respectively. Without the impact
of environment, the Hamiltonian of the total system is
given by,

H =
∑

i=a,b,e

ωi

2
σz

i +
∑

i=a,b

gi(σ+
i σ

−
e + h.c.), (1)

where ωi is the transition frequency of the ith atom, σ±
i

is the transition operator satisfying σ+
i |g〉i = |e〉i and

σ−
i |e〉i = |g〉i. The symbol h.c. denotes the complex con-

jugate item. To simplify the expression, it is assumed that
ωa = ωb = ωe = ω, and ga = gb = g. In the interaction
picture, equation (1) can be also expressed by

HI = g
∑

(σ+
i σ

−
e + h.c.). (2)
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The system considered here resembles a system of three
atoms coupled through the dipole-dipole nearest-neighbor
interaction between the atoms. It is a simplified model
of the Ising or XY Heisenberg chain system [18–20]. At
the time t, the density matrix of the whole system is ob-
tained by

ρ(t) = U(t)ρ(0)U †(t)

= U(t)|ψ(0)〉〈ψ(0)|U †(t)
= |ψ(t)〉〈ψ(t)|, (3)

where U(t) = exp(−iHIt) is the time evolution operator
and ρ(0) represents the initial state of the system. If the
external atom e is initially prepared at the ground state
|g〉e, the total system will keep unchanged at the state
|g〉a|g〉b|g〉e. In this case, the state of two trapped atoms
a and b is unentangled. When atom e is initially excited,
the state of the whole state is |ψ(0)〉 = |g〉a|g〉b|e〉e. By
the expansion of equation (3), ρ(t) is written as,

|ψ(t)〉 =cos
√

2gt|g〉a|g〉b|e〉e
− i√

2
sin

√
2gt(|e〉a|g〉b|g〉e + |g〉a|e〉b|g〉e). (4)

In the space of {|ee〉ab, |eg〉ab, |ge〉ab, |gg〉ab}, the reduced
density matrix of atoms a and b is,

ρab(t) = Tre[ρ(t)] =

⎛

⎜⎝

0 0 0 0
0 v v 0
0 v v 0
0 0 0 y

⎞

⎟⎠ , (5)

where the elements are v = 1
2 sin2

√
2gt, y = cos2

√
2gt.

The concurrence measure is used to evaluate the entan-
glement [9],

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (6)

where {λi, |i = 1, 2, 3, 4} are the square root of eigenvalues
of the non-Hermitian matrix ρρ̃ with ρ̃ = (σy⊗σy)ρ∗(σy⊗
σy) in the decreasing order. According to equation (6), the
entanglement of atoms a and b is,

C = 2|v| = sin2
√

2gt. (7)

It is found that entanglement of atoms a and b follows
the sine periodic evolution. At the time gt = 2n+1

2
√

2
π, (n =

0, 1, 2, ...), the concurrence arrives at the maximum 1. If
|g〉e is detected, the state ρab is just at the maximally
entangled state with the form of |ψ+〉ab = 1√

2
(|e〉a|g〉b +

|g〉a|e〉b).

3 Spontaneous decay and nonuniform
couplings

The former case of entanglement generation is discussed
without the effects of the environment. As a matter of fact,
the entanglement decoherence exists in some conditions

[21]. It is assumed that 2Γi (i = a, b, e) is the spontaneous
decay rate. Considering the vacuum reservoir, the master
equation governing the time evolution of the global system
is given by,

ρ̇ = −i[HI , ρ] + L(ρ), (8)

whereHI is the Hamiltonian in the interaction picture and
the Liouvillian L(ρ) denotes the spontaneous decay due to
the vacuum reservoir. By controlling the external atom e,
the coupling strengths ga and gb may be nonuniform, i.e.
ga �= gb. The Hamiltonian HI can be expressed as,

HI = g(1+ δ)(σ+
a σ

−
e +h.c.)+ g(1− δ)(σ+

b σ
−
e +h.c.), (9)

where g = ga+gb

2 is the mean value of the couplings and
δ = ga+gb

ga−gb
is nonuniform coefficient of the couplings. The

Liouvillian item L(ρ) is

L(ρ) =
∑

i=a,b,e

Γi(2σ−
i ρσ

+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i ). (10)

The analytical solution of equation (8) is extremely te-
dious. The entanglement for general parameters is numer-
ically illustrated, and the approximate analytical result is
obtained.

The evolution of the entanglement is plotted in Fig-
ures 1a and 1b. In Figure 1a, the concurrence of atoms a
and b is plotted as a function of the spontaneous decay
Γ and time t when the coupling is uniformly distributed.
The damping Rabi oscillation of the concurrence appears
when Γ �= 0 at any time. The concurrence is monotoni-
cally decreased with the increase of Γ . It is demonstrated
that the spontaneous decay destroys the generation of en-
tanglement. In Figure 1b, the concurrence is plotted as a
function of the nonuniform coefficient δ and time t. It is
seen that the concurrence is always maximal for δ = 0.
The peak values of C occur and are decreased with the
time. Meanwhile, the concurrence is zero at some time and
are gradually increased across those time. The evolution
behavior of the concurrence is similar to the Rabi oscilla-
tion. It is found that the entanglement generation is robust
when the couplings are uniform and the entanglement is
zero at some time. The effects of the spontaneous decay
Γ and the non-uniform coefficient δ on the concurrence C
are shown in Figure 1c. It is seen that the concurrence C
is decreased monotonically with the increase of Γ , and the
concurrence C is maximal when δ = 0. From Figure 1, it
is found that the behavior of the concurrence is like the
Rabi oscillation. The amplitude of oscillation is modulated
by the dissipative item, L(ρ). Robust generation of entan-
glement occurs when the interactions between atoms are
uniform.

4 Approximate analysis

To understand the origin of entanglement generation in
two trapped atoms, the analytical approximation is in-
vestigated. According to equation (5), the concurrence for
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Fig. 1. The concurrence C as a function of Γ , δ and t for
ωa = ωb = ωe = ω, g = 1.0, and Γa = Γb = Γe = Γ when (a)
the concurrence C as a function of the spontaneous decay rate
Γ and the time t when δ = 0.0; (b) the concurrence C as a
function of the non-uniform coefficient δ and the time t when
Γ = 0.2; (c) the concurrence C as a function of Γ and δ when
t = 1.0.

Γ = 0 is decided by the element 〈ge|ρ|eg〉. From the physi-
cal point of view, the element denotes the transition possi-
bility between two atoms from the upper level |e〉a (or|e〉b)
to the low level |g〉b (or |g〉a). With regard to the spon-
taneous decay from vacuum reservoir, the approximation
result is obtained by the perturbation method. The den-
sity matrix ρ(t) expanded at the time t = 0 is given,

ρ(t) = ρ(0)+ t
∂ρ

∂t
|t=0 +

t2

2!
∂2ρ

∂t2
|t=0 +

t3

3!
∂3ρ

∂t3
|t=0 + ... (11)

where ∂iρ
∂ti is the ith-order derivative of the density ma-

trix. At the limit of t � 1, the above expansion may be

truncated at the third-order approximation. The result is
given by,

∂ρ

∂t
= −i[H, ρ(0)] + L(ρ(0)),

∂2ρ

∂t2
= −i[H, ∂ρ

∂t
] + L

(
∂ρ

∂t

)
,

∂3ρ

∂t3
= −i[H, ∂

2ρ

∂t2
] + L

(
∂2ρ

∂t2

)
. (12)

If the initial state is |g〉a|g〉b|e〉e, the reduced density ma-
trix of atoms a and b is

ρab(t) =

⎛

⎜⎝

0 0 0 0
0 w v 0
0 v z 0
0 0 0 x

⎞

⎟⎠ , (13)

where w = g2(1+δ2)t2− 2
3g

2Γ (3δ2 +4δ+3)t3, v = g2(1−
δ2)t2 − 2g2Γ (1− δ2)t3, z = g2(1− δ2)t2 − 2

3g
2Γ (δ2 − 4δ+

3) and x = 1 − 2Γ 2t2 + 4g2Γ (1 + 2
3δ

2)t3. According to
equation (6), the concurrence C can be expressed as

C = 2|v| = 2g2(1 − δ2)t2 − 4g2Γ (1 − δ2)t3. (14)

In equation (14), the concurrence is optimal when the cou-
plings are uniform with δ = 0. The values of the concur-
rence are decreased with the increase of Γ . Since the tran-
sition probability 〈σ+

a σ
−
b 〉 can determine the behavior of

the concurrence, the time evolution of 〈σ+
a σ

−
b 〉 is plotted

in Figure 2. The value of 〈σ+
a σ

−
b 〉 is plotted in Figure 2a

when there is no spontaneous decay with Γ = 0. From
Figure 2a, it is seen that the transition possibility 〈σ+

a σ
−
b 〉

shows periodic behavior of sine function. If the sponta-
neous decay exists in the system with Γ �= 0 as shown
in Figure 2b, the behavior of 〈σ+

a σ
−
b 〉 is similar to the

damping Rabi oscillation. It follows that the concurrence
of atoms a and b is mainly determined by the transition
possibility. If the existence of the transition possibility is
assured, the entanglement generation in trapped atoms
can be realized.

5 Exact solution

If only one atom is excited, the equation of motion for
atomic operators can be exactly solved [22]. All the ele-
ments for the density matrix of three atoms can also be
obtained. The exact evolution of the entanglement can be
completely demonstrated by the analytical solutions to the
concurrence. The equation of motion [23,24] of the atomic
operators Q is expressed by

〈Q̇〉 = − i
∑

i=a,b

gi〈[σ+
i σ

−
e + σ−

i σ
+
e , Q]〉

+
∑

i=a,b,e

Γi〈2σ+
i Qσ

−
i − σ+

i σ
−
i Q−Qσ+

i σ
−
i 〉, (15)

where 〈Q〉 is the expection value of the atomic operator Q
for the density matrix of three atoms ρ. Here the simple
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Fig. 2. The transition possibil-
ity 〈σ+

a σ−
b 〉 as a function of the

time t is plotted for ωa = ωb =
ωe = ω, and Γa = Γb = Γe = Γ
when: (a) δ = 0 and Γ = 0; (b)
δ = 0 and Γ = 0.2.

case of ga = gb = g and Γa = Γb = Γe = Γ is considered.
In the initial condition of only one atom excited, i.e. ρ(0) =
|gge〉〈gge|, the reduced density matrix of the atoms a and
b can be written as

ρab(t) =

⎛

⎜⎝

0 0 0 0
0 R R 0
0 R R 0
0 0 0 S + U

⎞

⎟⎠ . (16)

The above elements can be calculated by the equation of
motion for some atomic operators

R = 〈σ+
a σ

−
b σ

−
e σ

+
e 〉,

S = 〈σ−
a σ

+
a σ

−
b σ

+
b σ

+
e σ

−
e 〉,

U = 〈σ−
a σ

+
a σ

−
b σ

+
b σ

−
e σ

+
e 〉. (17)

These elements obey equation (15) and can be given by
the following differential equations

Ṙ = −2ΓR− 2gX,
Ẋ = −2ΓX + g(2R− S),

Ṡ = −2ΓS + 4gX,
U̇ = 2Γ (2R+ S), (18)

whereX = i〈σ−
a σ

+
a σ

−
b σ

+
e 〉 also satisfies equation (15). The

initial conditions of equation (18) are R(0) = X(0) =
U(0) = 0 and S(0) = 1. Then, the exact analytical
solution to the elements for the density matrix can be
obtained by

R = exp(−2Γt) sin2 gt,

X = −1
2

exp(−2Γt) sin 2gt,

S = exp(−2Γt) cos 2gt,
U = 1 − exp(−2Γt). (19)

Therefore, using equation (6), the concurrence of C can be
exactly expressed by C(t) = 2|R| = 2 exp(−2Γt) sin2 gt.

For the strong dipole-dipole interactions, the collective
spontaneous emissions between the atoms need to be in-
cluded in the master equation [25]. The master equation

Fig. 3. The concurrence C is plotted as a function of the
time t when ga = gb = g = 2.0, Γa = Γb = Γe = Γ = 0.2. The
collective spontaneous emission ΓC is chosen to be 0.0, 0.1, 0.15
(from bottom to top).

with the collective effects can be expressed by

ρ̇ = −i[HI , ρ] + Lc(ρ),

Lc(ρ) =
∑

i=a,b,e

Γ (2σ−
i ρσ

+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i )

+
∑

j=a,b

Γc(2σ−
e ρσ

+
j − σ+

j σ
−
e ρ− ρσ+

j σ
−
e )

+
∑

k=a,b

Γc(2σ−
k ρσ

+
e − σ+

e σ
−
k ρ− ρσ+

e σ
−
k ). (20)

Where the collective spontaneous emission rate is 2Γc. The
concurrence C is plotted in Figure 3 when the collective
spontaneous emission rate Γc is varied. The effect of Γc

on the entanglement is clearly shown. From Figure 3, it is
seen that the entanglement will oscillate while the envelop
of C will decrease to zero with time t if the collective effect
is neglected. When the collective spontaneous emission is
included in the system, the envelop of C is decreased and
then increased with time t. The generation of the entangle-
ment between atoms a and b is enhanced to some degree
for large values of Γc and t. Especially after a certain time,
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the improvement from the collective effects is more appar-
ent. It is found that the collective effect can enhance the
generation of the entanglement.

6 Discussion

The entanglement of two trapped atoms is generated by
the interaction with an external excited atom. If the ex-
ternal atom is detected at |g〉e, the trapped atoms are
maximally entangled at the Bell state |ψ+〉ab. Consider-
ing the spontaneous decay from the vacuum reservoir, the
behavior of entanglement is similar to the damping Rabi
oscillation. The amplitudes of the concurrence are modu-
lated by the dissipative item L(ρ). The evolution behavior
of the entanglement is mainly dependent on the transition
possibility between two trapped atoms. It is found that the
generation of entanglement is optimal when the couplings
are uniform. The collective spontaneous emission from the
couplings can enhance the generation of the entanglement
at relatively long time.
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